
El vidrio fotovoltaico y la oportunidad de crear edificios solares
Todos sabemos cómo es un panel solar. Y en las ciudades suelen colocarse en las azoteas. Sin embargo, el vidrio fotovoltaico puede cambiarlo todo
Energía renovable23/06/2021
Cuando veo un rascacielos, tan habituales en la actualidad, me hago varias preguntas. La primera, cómo debe de ser subir todas esas plantas por las escaleras. La segunda, cuánto trabajo supondrá limpiar todas esas ventanas que cubren prácticamente toda la fachada. Y la tercera, cuánta energía eléctrica gastará ese gigante de acero y vidrio.
Está claro que el consumo eléctrico es mayor en un edificio de quince o veinte plantas que en uno de cinco o menos. Y aunque en los últimos tiempos se han ido incorporando mejoras a favor de la eficiencia energética, como sistemas de ventilación y aislamiento optimizados o paneles solares en las azoteas, todavía hay mucho camino por recorrer.
Y es aquí donde cabe preguntarse, ¿y si pudiéramos llenar las fachadas de los rascacielos o de cualquier edificio de vidrio fotovoltaico? Ventanas que, además de facilitar la entrada de la luz solar y de aislarnos de la temperatura y del ruido externo, convierta la energía solar en energía eléctrica. Todo ello aprovechando la enorme superficie que supone una fachada en vez de una más reducida azotea.
Una tecnología en constante evolución
Aunque hay patentes de paneles solares ya a finales del siglo XIX, no es hasta la segunda mitad del siglo XX que la energía solar empieza a ser tomada en serio. En parte, gracias a la carrera espacial. Precisamente, este es el primer propósito de las investigaciones de Bell Labs.
El primer problema con el que se encontrarán los primeros paneles solares será su eficiencia de conversión de energía solar a eléctrica. En 1959, Hoffman Electronics creada paneles solares con un 10% de eficiencia. Y al año siguiente subirá al 14%. Sólo dos años antes, Estados Unidos había lanzado el cuarto satélite artificial de la historia y el primero en contar con panel solar que convertía al 9% de eficiencia.
Así, aunque su aspecto externo suele ser muy similar, y todos estamos familiarizados con los paneles solares azul oscuro, los cambios en todos estos años han ido encaminados a obtener una mayor eficiencia de conversión combinando nuevos elementos.
Los proyectos más prometedores, por ejemplo, han llegado a porcentajes del 37% empleando placas fotovoltaicas policristalinas en 2018 o del 47% con la ayuda de placas solares que emplean tecnologías como los concentradores o la multiunión de células solares. Este último récord se logró en el National Renewable Energy Laboratory de Colorado, Estados Unidos, el año pasado.
Este mismo 2020, las investigaciones más prometedoras van enfocadas a la búsqueda de placas solares eficientes y baratas. Empleando células solares de perovskita, se han alcanzado porcentajes de eficiencia del 25% a un coste menor que las clásicas placas solares de silicio.
El vidrio fotovoltaico
Pero en el camino de la búsqueda de la eficiencia de conversión, las investigaciones relacionadas con energía solar han logrado encontrar alternativas a las placas solares actuales con el fin de integrarlas mejor allí donde son necesarias. Un ejemplo es el vidrio fotovoltaico.
El vidrio fotovoltaico tiene una ventaja obvia. Puedes colocarlo en cualquier lugar, ya que al ser transparente se integra en cualquier superficie. Para empezar, en ventanas y fachadas de cristal de edificios de tamaño considerable, como comenté al principio. Pero el vidrio fotovoltaico también podría integrarse en vehículos con techo solar o teléfonos inteligentes. ¿Te imaginas poder cargar tu iPhone mientras lo dejas unos minutos encima de la mesa?
Uno de los ejemplos más importantes de la tecnología conocida como vidrio fotovoltaico nace en 2014 en las instalaciones de la Michigan State University o Universidad Estatal de Michigan. Mediante una película de polímero invisible, convertía un vidrio corriente en una placa solar transparente. Su nombre técnico, concentrador solar luminiscente transparente, en inglés transparent luminescent solar concentrator.
Según explica la propia universidad en su medio online oficial, al tratarse de una película fina y transparente, podía integrarse en cualquier superficie.
El descubrimiento partió de la investigación en materiales plásticos luminiscentes. El objetivo, encontrar alternativas económicas para convertir los rayos del sol en electricidad más allá de las placas solares actuales. El problema con el que se encontraron hasta ese momento era que los elementos probados eran poco eficientes y poco transparentes.
Precisamente, la japonesa Sharp ya había presentado en 2012 vidrio fotovoltaico, si bien su nivel de transparencia era mejorable. Con todo, podía emplearse en superficies donde no se requiere un vidrio transparente del todo, como balcones o ventanas en las que no interese que entre la luz directa.
Presente y futuro del vidrio fotovoltaico
Saltando hasta la actualidad, empresas como Onyx Solar ya comercializan este tipo de tecnología. Tal y como reza en su página oficial, ofrece “vidrio arquitectónico transparente para edificios“. Además de “generar energía fotovoltaica, filtra la entrada de calor al interior del edificio”. En su catálogo, en función del nivel de transparencia del vidrio fotovoltaico podemos obtener entre 28 y 58 vatios pico por metro cuadrado. A más transparencia, menor eficiencia.
La eficiencia de la tecnología de vidrio fotovoltaico sigue siendo menor que la de los paneles clásicos por superficie, entre el 7% y el 10%, pero precisamente su ventaja radica en que podemos instalarlo en una mayor superficie, con lo que reducimos la diferencia entre uno y otro.
Pero hay más proyectos privados que ya comercializan soluciones relacionadas con el vidrio fotovoltaico, como la griega Brite Solar o la estadounidense Ubiquitous Energy. Precisamente, esta última es una empresa nacida en el conocido MIT y que cofundada por Richard Lunt, miembro del equipo de la Universidad Estatal de Michigan que logró el primer vidrio fotovoltaico completamente transparente.
El futuro del vidrio fotovoltaico pasa por mejorar la combinación entre eficiencia y transparencia. A mayor transparencia, menor generación de energía, algo que en el futuro se tendrá que mejorar para terminar de integrar esta tecnología en hogares y en toda suerte de edificios con ventanas.
Fuente: Hipertextual (.com)


Por el mal camino: cada vez más lejos de la meta de energías accesibles y sustentables para 2030
La humanidad no cumplirá con el Objetivo de Desarrollo Sostenible 7: garantizar el acceso a una energía asequible, fiable, sostenible y moderna para todos para 2030. La acción climática se verá seriamente comprometida

Australia avanza hacia su meta de energía renovable: el auge del autoconsumo fotovoltaico
Australia, donde las fuentes renovables ya aportan el 40% de la electricidad, avanza firme hacia su objetivo de lograr un 82% de generación renovable en 2030

Cómo transformar la matriz energética para garantizar un desarrollo sustentable
Las soluciones se suman para los clientes industriales, comerciales y particulares que encuentran en el mercado local opciones para transformar su matriz energética y volver sus demandas más eficientes

El aumento de energía que exigen los servidores de IA eleva al primer plano la vía nuclear. El cierre del reactor CAREM, de proyección mundial, apunta al despliegue de negocios estadounidenses. Argentina Sociedad Anónima, ante una oportunidad histórica





Desmontando los mitos que nos privan de la vital infraestructura arboleda en la lucha climática

Los niveles más altos de glifosato de Sudamérica se encontraron en uno de los arroyos afluentes del Paraná
“El sedimento del arroyo Las Conchas –en Entre Ríos- presentó la mayor concentración de glifosato registrada en Sudamérica (5002 µg/kg) y los bioensayos mostraron una letalidad del 100% en los tratamientos sin diluir”, reflejó la investigación difundida por el biólogo Rafael Lajmanovich

¿Cómo lograron los Países Bajos convertirse en un paraíso ciclista? ¿Qué lecciones podemos aprender de su éxito en la promoción de la movilidad sostenible?
