
¿Es tu edificio realmente sostenible o solo está lleno de placas solares?
¿Qué nos revelan la huella de carbono oculta? ¿Es el diseño pasivo o es funcional? ¿Cómo será el verdadero futuro de la energía fotovoltaica?

Invernaderos inteligentes que operen sin conexión a la red eléctrica, que necesiten menos agua para los cultivos y que logren, además, que estos crezcan incluso mejor que en explotaciones bajo plástico convencionales. Es lo que ha logrado la Universidad californiana de Santa Cruz que, tras poner a prueba una nueva tecnología solar en explotaciones reales, acaba de demostrar que los invernaderos de doble uso (para la captación de energía y para el cultivo de alimentos) ofrecen resultados prometedores en cuanto a la producción y el autoabastecimiento eléctrico. 
“Hemos demostrado que los invernaderos inteligentes pueden capturar energía solar sin que se reduzca el crecimiento de las plantas”, sintetiza uno de los impulsores de este trabajo de investigación, el profesor Michael Loik. De hecho, han demostrado más. Así se desprende de las pruebas realizadas en tres explotaciones dotadas de una tecnología especialmente diseñada para invernaderos de doble uso. Tras cultivar 20 variedades, entre ellas tomate, pepino, limón, lima o fresa, los resultados sorprenden.

El 80% de los productos cultivados no resultaron afectados en modo alguno por la instalación del sistema para la captación de energía solar sobre el invernadero. El 20% restante creció mejor que en una explotación convencional. Además, en casos como el del tomate, el equipo comprobó cómo se reducían sus necesidades de agua. “Las plantas necesitaron un 5% menos de agua para alcanzar el mismo nivel de crecimiento que en un invernadero convencional”, asegura Loik.
Y todo esto, ¿cómo se ha conseguido? Con el desarrollo de una novedosa tecnología creada específicamente para este fin. Se trata de WSPV (Wavelength-Selective Photovoltaic Systems), un sistema fotovoltaico de longitud de onda selectiva que consiste en la instalación de paneles de techo transparentes con un tinte magenta luminiscente. Con esto, se logra que el equipo absorba la luz y transfiera la energía a unas pequeñas tiras fotovoltaicas en las que se produce la electricidad.

Al mismo tiempo, esta innovación que conjuga las células solares luminiscentes con paneles convencionales de silicio, absorbe parte de las longitudes de onda azules y verdes, pero transmite a los cultivos todas las demás, que son precisamente las que se usan para hacer la fotosíntesis.
Además de convivir en perfecta armonía con los cultivos, esta tecnología permite generar energía de forma más eficiente y a un coste más bajo que los paneles convencionales. Tanto es así que, tal y como aseguran los promotores de esta innovación, el coste por panel WSPV es de 65 céntimos de dólar por vatio, lo que supone alrededor del 40% menos que si se optara por células tradicionales de silicio.

“Esta tecnología tiene potencial para llevar a los invernaderos a desconectarse de la red eléctrica”, asegura el equipo científico, que visualiza ya un futuro con explotaciones autosuficientes, que obtengan del sol la energía necesaria para controlar la temperatura y alimentar los ventiladores y cualquier otro sistema para monitorizar los cultivos. Este camino hacia la autosuficiencia energética es clave para reducir el impacto ambiental de un tipo de producción agrícola que ha multiplicado por seis su superficie en las últimas dos décadas.
“Es grande y será mayor”, anticipan los científicos. China, donde ya se analizan los invernaderos solares; Canadá, país en el que crecen las explotaciones bajo plástico, o España, con más de 30.000 hectáreas de cultivo bajo cubierta solo en la provincia de Almería, son algunas de las zonas en las que estos invernaderos inteligentes podrían dar un auténtico giro a la industria para hacerla más sostenible.

¿Qué nos revelan la huella de carbono oculta? ¿Es el diseño pasivo o es funcional? ¿Cómo será el verdadero futuro de la energía fotovoltaica?

Gracias a la energía eólica, al consenso político y a una visión apoyada en la ciencia, Uruguay pasó de depender de las importaciones de hidrocarburos a generar el 98% de su electricidad a partir de fuentes renovables

La transición energética es, sin duda, una de las mayores prioridades globales del siglo XXI. Sin embargo, en medio de este fervor por un futuro verde, surge una pregunta incómoda: ¿Estamos ante una burbuja en el sector de las energías limpias?

En la costa mediterránea de Francia se ha puesto en marcha un complejo eólico pionero que integra la generación de energía con la protección de los ecosistemas marinos. El proyecto, que incorpora estructuras modulares para crear hábitats artificiales, se erige como un nuevo modelo de desarrollo sostenible

Muchos países latinoamericanos dependen de los combustibles fósiles para su energía, sus exportaciones y su economía. Preguntamos a expertos sobre la descarbonización en la región





En Argentina, el fenómeno climático de La Niña seguirá presente hasta enero de 2026 y traerá menos lluvias durante el verano

Sin un horizonte político de eliminación de los combustibles fósiles y con un objetivo de +1,5ºC muerto, los científicos climáticos piden una adaptación social ya no sólo a los fenómenos extremos, sino también a los “puntos de inflexión”, la posible desestabilización de los grandes sistemas que regulan el clima global. Islandia ha dado el primer paso

La Comisión ha adoptado hoy un nuevo marco estratégico para una bioeconomía de la UE competitiva y sostenible, que traza el camino a seguir para construir una economía europea limpia, competitiva y resiliente

"El cambio climático es solo un síntoma, no es el problema principal", le dice Mathis Wackernagel a BBC Mundo