
Paneles de hidrógeno, una nueva alternativa para el autoconsumo doméstico pendiente de patente
Los paneles de hidrógeno de la KU Leuven se presentaron por primera vez en 2019. Producen hidrógeno verde de alta eficiencia a partir del sol y del vapor de agua del aire
Energía renovable07/01/2022Investigadores de la Universidad KU Leuven han desarrollado unos innovadores paneles de hidrógeno, una tecnología única. Recientemente se han colocado varios de estos paneles en el tejado verde del laboratorio Fluxys de Anderlecht en una prueba piloto.
Un gran paso, ya que el hidrógeno verde va a desempeñar un papel importante en la transición energética: su producción y uso no genera emisiones de CO2.
Otra ventaja es que el hidrógeno puede almacenarse durante más tiempo. Los paneles de hidrógeno son una oportunidad para que los consumidores den el paso hacia la autoproducción para calentar, conducir o usarlo como materia prima para sustituir los productos fósiles.
Instalación piloto.
Con la instalación en Anderlecht, la KU Leuven recurre a los conocimientos técnicos específicos de Fluxys. En este proyecto trabajan actualmente 10 personas.
Los paneles de hidrógeno están dispuestos en diferentes orientaciones. Las mediciones y análisis en el laboratorio de Fluxys mostrarán qué variaciones en el perfil de producción y la composición del hidrógeno se producen en función de la orientación de los paneles, las condiciones meteorológicas, la hora del día y las estaciones. Se podrán usar esos datos para seguir perfeccionando esta tecnología.
Actualmente están tramitando varias solicitudes de patente, así que mientras estén pendientes, no conoceremos muchos detalles.
El punto de partida del proyecto era sencillo: ¿cómo podemos producir combustible en cualquier momento y en cualquier lugar? Esa pregunta los llevó directamente a la respuesta más lógica: el aire, y especialmente la humedad que contiene. Incluso el aire del desierto contiene suficiente vapor de agua, por lo que se puede aplicar este proceso en cualquier lugar. El vapor de agua es el cuarto gas del aire después del oxígeno, el nitrógeno y el argón, así que si encuentras la forma de atraparlo, tienes agua más que suficiente para dividirlo.
Actualmente están tramitando varias solicitudes de patente, así que mientras estén pendientes, no conoceremos muchos detalles.
Cómo funciona.
El «panel de hidrógeno» convierte la humedad del aire en gas hidrógeno. La luz solar es importante, por supuesto, el panel se parece a un panel solar, pero prefieren llamarlo panel de hidrógeno.
El sistema convierte la luz solar y el vapor de agua del aire directamente en gas hidrógeno, con una eficiencia del 15%.
Es más eficiente que las formas tradicionales de producir gas hidrógeno.
Por ejemplo, en las condiciones climáticas belgas, este panel puede producir una media de 250 litros al día en un año.
Para hacernos una idea: veinte de estos paneles podrían calentar y suministrar electricidad a una casa bien aislada con una bomba de calor durante todo el invierno. Si además instalas un colector solar térmico y paneles solares fotovoltaicos, es suficiente para pasar el año.
El punto de partida del proyecto era sencillo: ¿cómo podemos producir combustible en cualquier momento y en cualquier lugar? Esa pregunta los llevó directamente a la respuesta más lógica: el aire, y especialmente la humedad que contiene. Incluso el aire del desierto contiene suficiente vapor de agua, por lo que se puede aplicar este proceso en cualquier lugar. El vapor de agua es el cuarto gas del aire después del oxígeno, el nitrógeno y el argón, así que si encuentras la forma de atraparlo, tienes agua más que suficiente para dividirlo.
La pregunta clave es: ¿cómo sacar esta agua del aire para dividirla en gas hidrógeno y gas oxígeno? Las temperaturas de un panel solar pueden alcanzar fácilmente hasta 50 o incluso 70ºC, lo que no ayuda cuando se trabaja con vapor de agua. Además, ¿cómo crear un sistema que funcione bajo la lluvia torrencial y en situaciones en las que la humedad es muy baja? El mayor reto, en otras palabras, es el aspecto de la gestión del agua. Este sistema tiene una solución para esa cuestión. Pero tendremos que esperar a que se resuelvan las patentes.
Hidrogeno del aire y del sol
En cuanto a sus usos, será un sistema complementario a otras formas de producir energía verde. Los métodos existentes para producir gas hidrógeno seguirán teniendo su lugar. Para fabricar acero o fertilizantes artificiales con este sistema, por ejemplo, se necesitaría un número considerable de paneles de hidrógeno. Por ello, la electrólisis tradicional sigue siendo una opción mejor para estas industrias.
Este sistema tampoco compite necesariamente con las baterías de los coches eléctricos. Las baterías son ideales para distancias cortas en vehículos ligeros. Sin embargo, a partir de cierto punto de inflexión, el gas hidrógeno se convierte en la mejor opción. Un camión no puede ir de Bélgica a España con baterías. Con el hidrógeno como combustible, el transporte de larga distancia es posible. Además, el hidrógeno tiene un gran potencial también para el transporte marítimo.
¿Cuando podría llegar al mercado?
Es difícil de predecir. El panel de hidrógeno está lejos de estar listo para su producción a gran escala.
Acaban de completar los experimentos en el laboratorio. A partir de este verano, lo van a probar en el tejado de una casa belga y en su campus universitario para examinar el impacto de las condiciones meteorológicas, entre otras cosas.
En los próximos dos años tendrán un mayor desarrollo. Primero probaran a pequeña escala para detectar y arreglar cualquier defecto que quede, y para convertirlo en un producto comercial sólido. Esta parte del proceso incluye demostraciones en varios sectores, como la agricultura, el comercio minorista y el transporte.
En cuanto al precio, aunque aún no se puede saber un precio exacto, quieren que sea lo más asequible posible. Las materias primas del panel de hidrógeno no son costosas: no se necesitan metales preciosos ni otros componentes caros.
No es una produccion propia, la fuente es Eco Inventos (.com)


Por el mal camino: cada vez más lejos de la meta de energías accesibles y sustentables para 2030
La humanidad no cumplirá con el Objetivo de Desarrollo Sostenible 7: garantizar el acceso a una energía asequible, fiable, sostenible y moderna para todos para 2030. La acción climática se verá seriamente comprometida

Australia avanza hacia su meta de energía renovable: el auge del autoconsumo fotovoltaico
Australia, donde las fuentes renovables ya aportan el 40% de la electricidad, avanza firme hacia su objetivo de lograr un 82% de generación renovable en 2030

Cómo transformar la matriz energética para garantizar un desarrollo sustentable
Las soluciones se suman para los clientes industriales, comerciales y particulares que encuentran en el mercado local opciones para transformar su matriz energética y volver sus demandas más eficientes

El aumento de energía que exigen los servidores de IA eleva al primer plano la vía nuclear. El cierre del reactor CAREM, de proyección mundial, apunta al despliegue de negocios estadounidenses. Argentina Sociedad Anónima, ante una oportunidad histórica




Nuevo reporte de Copernicus muestra que el pasado mayo fue el segundo más cálido hasta ahora
Mayo de 2025 se consolidó como el segundo más caluroso jamás registrado, solo superado por su predecesor en 2024, según datos revelados hoy por el observatorio europeo Copernicus

El acuerdo entre Chile y Noruega para la conservación de la Antártida
Durante la Tercera Conferencia de Naciones Unidas sobre el Océano consolidaron su compromiso con la investigación y conservación de la Antártida con un Memorándum de Entendimiento


Desmontando los mitos que nos privan de la vital infraestructura arboleda en la lucha climática

Los niveles más altos de glifosato de Sudamérica se encontraron en uno de los arroyos afluentes del Paraná
“El sedimento del arroyo Las Conchas –en Entre Ríos- presentó la mayor concentración de glifosato registrada en Sudamérica (5002 µg/kg) y los bioensayos mostraron una letalidad del 100% en los tratamientos sin diluir”, reflejó la investigación difundida por el biólogo Rafael Lajmanovich